
A hierarchical modeling approach to estimate regional acute 
health effects of particulate matter sources

J. R. Krall*,a, A. J. Hackstadtb, and R. D. Pengc

aDepartment of Biostatistics & Bioinformatics, Emory University, 1518 Clifton Road, Mailstop 
1518-002-3AA, Atlanta, GA 30322

bDepartment of Biostatistics, Vanderbilt School of Medicine, 2525 West End Avenue, Suite 11000, 
Nashville, TN 37203

cDepartment of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., 
Baltimore, MD 21205

Abstract

Exposure to particulate matter (PM) air pollution has been associated with a range of adverse 

health outcomes, including cardiovascular disease (CVD) hospitalizations and other clinical 

parameters. Determining which sources of PM, such as traffic or industry, are most associated with 

adverse health outcomes could help guide future recommendations aimed at reducing harmful 

pollution exposure for susceptible individuals. Information obtained from multisite studies, which 

is generally more precise than information from a single location, is critical to understanding how 

PM impacts health and to informing local strategies for reducing individual-level PM exposure. 

However, few methods exist to perform multisite studies of PM sources, which are not generally 

directly observed, and adverse health outcomes. We developed SHARE, a hierarchical modeling 

approach that facilitates reproducible, multisite epidemiologic studies of PM sources. SHARE is a 

two-stage approach that first summarizes information about PM sources across multiple sites. 

Then, this information is used to determine how community-level (i.e. county- or city-level) health 

effects of PM sources should be pooled to estimate regional-level health effects. SHARE is a type 

of population value decomposition that aims to separate out regional-level features from site-level 

data. Unlike previous approaches for multisite epidemiologic studies of PM sources, the SHARE 

approach allows the specific PM sources identified to vary by site. Using data from 2000–2010 for 

63 northeastern US counties, we estimated regional-level health effects associated with short-term 

exposure to major types of PM sources. We found PM from secondary sulfate, traffic, and metals 

sources was most associated with CVD hospitalizations.
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1. Introduction

Exposure to particulate matter air pollution less than 2.5 μm in aerodynamic diameter, 

referred to as PM2.5, has been associated with acute cardiovascular health effects based on 

both epidemiologic and toxicological studies [1]. Cardiovascular health effects related to 

short-term PM2.5 exposure include hospitalizations for cardiovascular diseases (CVD) [2, 3] 

as well as subclinical health measures such as autonomic dysfunction [4, 5] and increased 

blood pressure [6]. Current recommendations for those with heart disease and other 

susceptible individuals include referring to the Air Quality Index (AQI), which provides 

daily levels of ambient PM2.5 concentrations and associated health risks, and limiting 

physical activity when PM2.5 concentrations are high [7, 8]. However, PM2.5 is a complex 

chemical mixture generated by sources such as traffic, industry, and vegetative burning [9, 

10], and these sources emit combinations of chemical constituents that vary in their 

associations with adverse health outcomes [11, 12, 13]. Determining which types of PM2.5 

sources, or which combinations of chemical constituents, are most toxic could lead to 

development of more targeted recommendations to reduce health risks in susceptible 

subpopulations.

In the most recent US Environmental Protection Agency (US EPA) scientific review of the 

health effects of PM, emphasis was placed on results from multisite epidemiologic studies 

because such studies are critical for more precisely estimating health effects associated with 

PM exposure, identifying potential confounders and effect modifiers, and representing 

health effects across the US [1]. Multisite epidemiologic studies have identified positive 

associations between short-term PM exposure and CVD hospitalizations, including the 

National Morbidity and Mortality Study of PM10 in 14 US cities [14], the Medicare Air 

Pollution Study (MCAPS), which analyzed PM2.5 in 204 US counties [2], as well as 

multisite studies in Europe [15, 16]. These multisite studies of PM and CVD hospitalizations 

contributed to the US EPA conclusions that a “causal relationship exists between short-term 

PM2.5 exposure and cardiovascular effects” [1]. Further analyses of the MCAPS data found 

associations between CVD hospitalizations and PM2.5 elemental carbon (EC) and organic 

carbon (OC) matter in 119 US communities [17], and PM2.5 vanadium, nickel, and EC were 

associated with CVD effect estimates for PM2.5 in 106 US counties [18]. However, these 

PM2.5 constituents can be emitted by multiple sources of PM2.5 and therefore it is not 

currently known which PM2.5 sources are most associated with adverse cardiovascular 

outcomes.

Estimating health effects associated with exposure to source-specific PM2.5 is challenging 

because PM2.5 sources are generally unobserved in ambient air and are frequently estimated 

using source apportionment models. Commonly, source apportionment models are applied 

to concentrations of PM2.5 and its chemical constituents observed at single ambient 
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monitors. Performing multisite studies of PM2.5 source types and health is not only 

challenging because sources are unobserved at each site but also because PM2.5 sources vary 

spatially in chemical composition both across the US [9, 19, 20, 21] and within a single 

community [10].

In multisite epidemiologic studies of total PM2.5, estimated community-level (i.e. county- or 

city-level) health effects are frequently pooled across sites to estimate regional-level effects. 

However, it is unclear how to pool community-level health effects for PM2.5 source types 

because, unlike total PM2.5, the presence of PM2.5 source types varies across communities. 

Pooling estimated community-level health effects of PM2.5 source types requires 

determining which, if any, source types are similar in chemical composition across monitors. 

Commonly, ad hoc approaches are used to match estimated sources between monitors. 

These methods include using the inferred chemical makeup of each source type, for example 

matching traffic-related sources based on amounts of EC and OC, as well as matching 

sources based on the temporal correlation of PM2.5 by source type [22, 10, 23]. These 

methods have not been evaluated from a statistical perspective in multisite epidemiologic 

studies for their ability to estimate health effects corresponding to PM2.5 source types. Some 

source apportionment models have been extended to handle multisite data, though they are 

not appropriate when PM2.5 sources vary across the study site. Positive Matrix Factorization 

(PMF) [24] 5.0 can incorporate data from multiple sites to improve source estimation, but 

requires sources to be homogeneous across sites and therefore is not generally an 

appropriate approach to perform multisite epidemiologic studies. Two previous multisite 

studies of PM2.5 sources have extended source apportionment models to multiple monitors 

in a region by assuming that each source type has the same chemical composition across 

monitors [25, 26], though these approaches are generally inappropriate because of the 

known spatial variability in PM2.5 sources.

Therefore, existing methods have two major limitations when conducting multisite studies of 

acute health effects of PM2.5 sources. Either they require ad hoc assessment of source 

similarity between monitors, which limits their utility in large, regional-level studies, or they 

require unreasonable assumptions about the homogeneity of pollution sources in a region. 

To address these limitations, we developed SHARE, a hierarchical modeling approach to 

estimate acute health effects of PM2.5 sources in multisite epidemiologic studies. SHARE 

identifies which monitors measure PM2.5 source types that are similar in chemical 

composition, and whose estimated health effects can be pooled across communities in 

multisite studies.

This paper is organized as follows. Section 2 provides details about the relevant methods 

including source apportionment approaches, epidemiologic models of the health effects of 

PM2.5 sources, and our proposed SHARE method. We introduce the data in Section 3 and 

provide a simulation study of our SHARE approach in Section 4. In Section 5, we applied 

SHARE to the MCAPS dataset to estimate regional-level associations between daily 

cardiovascular (CVD) hospitalizations and short-term exposure to PM2.5 sources for 63 

counties in the northeastern US from 2000–2010. We have made software publicly available 

to apply SHARE (https://github.com/kralljr/share).
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2. Methods

2.1. Source apportionment

Many source apportionment models have been proposed to estimate sources of PM2.5 from 

PM2.5 chemical constituent data. In this section, we briefly describe the standard source 

apportionment framework and common source apportionment models. For PM2.5 chemical 

constituent concentrations from one ambient monitor, source apportionment generally 

assumes the matrix of observed concentrations for T days and P chemical constituents 

X[T×P] is the product of two unobserved matrices F and Λ such that

(1)

where L is the number of sources. The source concentration matrix F[T×L] represents the 

concentration of PM2.5 from each unobserved source type l (l = 1…L) on day t (t = 1…T) 

and the profile matrix Λ[L×P] describes the relative contribution of each chemical constituent 

p (p = 1…P) to each source type l. The profile matrix characterizes the chemical 

composition of each source type and is used to link estimated sources to known sources of 

pollution at that monitor. The L time series from the source concentration matrix F[T×L] are 

frequently used in time series regression models to estimate community-level associations 

between sources and adverse health outcomes. The last matrix, ε[T×P], represents 

measurement error or other variation not captured by the model. Source apportionment 

models differ from other latent variable models because they aim to estimate interpretable F 

and Λ such that ftl ≥ 0 and λlp ≥ 0 for all t, l, p and  should be approximately equal 

to the total PM2.5 mass observed on day t.

Examples of commonly applied source apportionment methods include Positive Matrix 

Factorization (PMF) [24], Absolute Principal Component Analysis (APCA) [10, 27], and 

Unmix [28]. These methods differ in how they implement the positivity constraints when 

estimating F and Λ. For example, APCA estimates sources of PM2.5 at one monitor using 

rescaled results from Principal Component Analysis (PCA). Briefly, to obtain mostly 

positive daily source concentrations, APCA estimates PCA scores using the uncentered data 

(whereas standard PCA estimates scores using centered data). Then to ensure the sum of 

daily source-specific PM2.5 is approximately equal to daily total PM2.5, APCA rescales the 

resulting scores by regressing daily total PM2.5 on the estimated APCA scores. APCA can 

be easily implemented using standard statistical software. Technical details of APCA are 

summarized in the Supplementary Material, Appendix A.

One limitation of commonly applied source apportionment methods is that they are designed 

for data from individual monitors and cannot be easily extended to multiple monitors across 

a region. Thurston et al. [26] extended standard APCA to multiple monitors by assuming 

that PM2.5 source types do not vary between monitors. We will refer to this method as 

multiple monitor APCA or mAPCA and the method is summarized in the Supplementary 

Material, Appendix A. The method for mAPCA is similar to APCA, except the concatenated 

data across monitors are used in place of the data from an individual monitor. The mAPCA 
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approach provides a framework for comparing and combining sources across monitors, but 

assumes the source profiles are the same across monitors. This assumption means mAPCA 

effectively estimates concentrations for PM2.5 sources at a particular monitor that (1) may 

not actually be present in the geographic area containing that monitor or (2) may have a 

chemical composition that differs from the regionally-estimated source. While these 

assumptions of mAPCA are problematic, mAPCA does not require ad hoc steps to estimate 

PM2.5 sources across a large region to estimate regional-level health effects. We 

implemented APCA and mAPCA using R version 3.0 [29]

2.2. Estimating associations between PM2.5 sources and CVD hospitalizations

In this section, we assume that PM2.5 source concentrations  have already been estimated 

for one monitor in each county c using source apportionment. Commonly, regional-level 

health effects associated with short-term exposure to PM2.5 are estimated by pooling 

estimated community-level health effects; in our study a community corresponds to a US 

county. To estimate county-level health effects of PM2.5 sources, log-linear time series 

models are fitted to daily counts of morbidity and each PM2.5 source type l. Specifically in 

our models, we assumed the number of CVD hospitalizations for day t for a particular 

county c, yt,c ~ Poisson(μt,c) and

(2)

where confounders may include control for meteorology, day of week, long-term trends in 

CVD hospitalizations, and others. For each county c, we estimated associations between 

PM2.5 source type l and CVD hospitalizations using the log relative risk  and its 

corresponding standard error. We fitted separate regression models for each source type so 

that the interpretation of the coefficient corresponding to source type l will be the same 

across counties with varying source types.

To estimate regional associations between PM2.5 sources and CVD hospitalizations, we 

fitted two-level Bayesian hierarchical models as in previous multisite studies of CVD 

hospitalizations and PM2.5 [2, 17]. These models allow the estimation of regional 

associations by pooling county-specific associations from equation 2. The hierarchical 

model assumes the estimated log relative risks for each source l and county c, , are 

normally distributed and centered around the true log relative risk βl,c,

(3)

where  is the estimated standard error of  from the time series regression model 

(equation 2) and is assumed to be known. In the second level of the model, the county-

specific log relative risks βl,c follow a normal distribution with mean θl, the regional log 

relative risk and the parameter of interest. This model allows the estimation of regional-level 
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health effects, θl, using a large number of counties, each with many days of data. We fitted 

the hierarchical models using the TLNise software [30, 17] implemented in R.

2.3. SHared Across a REgion (SHARE) method

Multisite studies of PM2.5 source types and health are challenging because each source l 
may vary in its presence and chemical composition across sites. Therefore, it is not known 

which sources are similar in chemical composition across sites to inform how estimated 

community-level health effects should be pooled across sites in equation 3. We propose 

SHARE, a hierarchical modeling approach that facilitates estimating regional-level 

associations between PM2.5 sources and adverse health outcomes. SHARE is a two-stage 

approach. In the first stage, we compare estimated community-level sources to determine 

those major sources, for example traffic, that are present at many monitors in the study. In 

the second stage, we determine how similar these major sources are to sources present at 

each community. This information can then be used to guide pooling estimated community-

level health effects to estimate regional-level health effects of major PM2.5 sources as in 

equation 3.

Using standard source apportionment methods, we first estimate source profiles Λi and 

source concentrations Fi at each monitor i, as described in Section 2.1. For each monitor i, 
most source apportionment models roughly assume that the PM2.5 chemical constituent 

concentrations, Xi, are approximately equal to the product of a source concentration matrix, 

Fi, and a source profile matrix, Λi, such that Xi ≈ FiΛi (e.g. equation 1). The main aim of the 

SHARE approach is to determine how information can be pooled across monitors i.

2.3.1. Estimating “major sources”—In the first stage of SHARE, we estimate a 

population-level matrix Λ that represents those major sources whose chemical compositions 

are similar across monitors and therefore represent sources whose estimated health effects 

should be pooled across communities in a hierarchical model. It is important to note that the 

information contained within Λ will not exactly correspond to source profiles in the standard 

source apportionment framework, but rather Λ will only be used to guide pooling 

community-specific estimated health effects and to help interpret regional-level estimated 

health effects.

We estimate Λ using ideas from Population Value Decomposition (PVD) [31], which is an 

approach that estimates population-level features from data across multiple individuals and 

uses these features to approximate individual-level data. As in PVD, we find the population-

level profile matrix Λ by applying PCA to the matrix of concatenated source profiles for all 

M ambient monitors, . Then , where W is the matrix of 

principal component loadings of  and WWT is the identity matrix. Letting ΛT be the 

matrix of the first L principal component loadings that explain most of the variability in , Λ 
will represent the profiles corresponding to major types of PM2.5 sources.

2.3.2. Pooling community-level data—In this second stage, we aim to determine which 

sources represented by the major source profile matrix Λ are represented in each monitor-

specific source concentration matrix, Fi. Using our major source profile matrix Λ, we can 
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express each monitor’s profile matrix as Λi ≈ Λi ΛTΛ because . Then, using Λi 

and Λ, we can rewrite

This straightforward application of PVD estimates source concentrations at each monitor i 

as . Because Fi represents the source concentrations present at monitor 

i,  is a linear combination of the source concentrations estimated at monitor i based 

on the major sources represented in Λ. Therefore, we cannot use  to estimate community-

level health effects of PM2.5 sources because the linear combination may not represent 

exposures present at monitor i.

To address this limitation, we represent the relationship between sources at monitor i and 

major sources as a bipartite graph. We note that entries in Ψi = ΛiΛT will be large for 

sources at monitor i that are similar in chemical composition to the major sources 
represented by Λ. The bipartite graph representation will match sources present at monitor i 
to major sources, where an edge indicates a source at monitor i is similar in chemical 

composition to a major source. We then estimate Ψi using the off-diagonal of the 

corresponding adjacency matrix of the bipartite graph, which consists of ones and zeroes 

with ones indicating the presence of an edge.

We used the Hungarian method [32] for optimal bipartite matching to estimate the adjacency 

matrix Ψi. The Hungarian method finds those sources at monitor i that are similar in 

chemical composition to major sources by minimizing the sum of the corresponding edges 

in Ψi. Recall that . If we rescale Λi and Λ to contain only unit vectors, 

, where  is the angle between the chemical composition of source li at 

monitor i and major source l. Since smaller angles correspond to sources at monitor i that are 

similar in chemical composition to major sources, we applied the Hungarian method to the 

matrix of angles  to find , as in Figure 1A. We limited matches to angles less than 45 

degrees, so that some sources at monitor i may differ in chemical composition compared 

with major sources. This cutoff allows “local” sources, which are sources that are only found 

at one or a few monitors in the study (e.g. factories) or sources that have substantial variation 

in chemical composition across monitors. Local sources may be of interest in individual 

community studies, but are not the focus of this study of regional-level health effects of 

PM2.5 sources. The cutoff of 45 degrees ensures a matched Λi at monitor i is closer to the 

major source represented in Λ than to a vector orthogonal to the major source. We did not 

find that our results were sensitive to the cutoff angle selected.

Then using the estimated adjacency matrix ,  will be a reordering of Fi based on 

the chemical composition of major sources. For a source at monitor i that is not chemically 

similar to any major sources, the corresponding column l in  will contain all zeros and 

 for all days t. Because we estimate Ψi using an adjacency matrix, the concentrations 

in  are estimated using only the chemical composition of sources at monitor i, Λi. The 
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columns of  can then be used to estimate community-level health effects of short-term 

exposure to PM2.5 sources. It is important to note that when a source type l is not present at 

a monitor,  for all t, therefore we do not estimate associations between PM2.5 source 

type l and health using data from that monitor.

Therefore, the SHARE approach gives two results: the major source profile matrix Λ, that 

can be used to summarize major sources within an area, and the monitor-specific source 

profile matrices , which can be used to estimate regional-level health effects. The  are 

critical because they represent a reordering of the source concentrations Fi based on Λ. 

Because the lth columns of each  correspond to the same major source, each source l can 

be pooled across monitors to estimate regional-level effects as in equation 3.

3. Data

The US Environmental Protection Agency’s Chemical Speciation Network (EPA CSN) is a 

national monitoring network of approximately 250 monitors that measure ambient air 

concentrations for total PM2.5 mass and over 50 PM2.5 chemical constituents roughly every 

third or sixth day. We restricted our analysis to 24 chemical constituents of PM2.5 

(Supplementary Material, Table S1) that contributed to previously identified PM2.5 source 

types in the US [9, 10, 20]. These constituents include major ions (e.g. sulfate and nitrate), 

metals (e.g. zinc and vanadium), and carbon-containing constituents (EC and OC). For the 

eleven year period from 2000–2010, we created a dataset of 85 EPA CSN monitors in 

northeastern US counties (Figure 2) that each had more than 50 days measuring all 24 PM2.5 

chemical constituents and total PM2.5 mass. These monitors fall within the northeast and the 

industrial midwest regions [1, 14] in coastal, industrial, and heavily populated counties. We 

also obtained daily temperature and dew point temperature for each county from the 

National Oceanic and Atmospheric Administration [33].

To estimate associations between PM2.5 source types and CVD hospitalizations, we used 

daily emergency CVD hospitalizations for Medicare enrollees from the Centers for 

Medicare and Medicaid, aggregated by county. We restricted our dataset to 63 counties in 

the northeastern US containing at least one EPA CSN monitor such that all 85 monitors from 

our restricted EPA CSN dataset fall within one of these 63 counties. As in previous studies 

of PM and emergency CVD hospitalizations, we included primary diagnoses of heart failure, 

heart rhythm disturbances, cerebrovascular events, ischemic heart disease, and peripheral 

vascular disease in our daily counts for CVD hospitalizations [17, 34]. Because the 

Medicare data analyzed for this study did not include individual identifiers, we did not 

obtain consent from individuals. This study was reviewed and exempted by the Institutional 

Review Board at the Johns Hopkins Bloomberg School of Public Health.

4. Simulation study

We used a simulation study to test the performance of SHARE. We simulated PM2.5 by 

source type for sources identified in the northeastern US including traffic, fireworks, soil 

dust, secondary sulfate, salt, metals, and a miscellaneous phosphorus/vanadium (P/V) 

source. For each monitor, we simulated which source types generated total PM2.5 based on 
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one of 5 subregions, or areas with different source types (Table 1). These subregions 

represent a potential spatial distribution of identifiable sources across a region, where 

identifiable means the source is both present in the subregion and located close enough to an 

ambient monitor to be detected. Some sources such as traffic are spatially variable [10] and 

in order for an ambient monitor to identify a traffic source, there must both be traffic in the 

community and the monitor must be located reasonably close to a roadway. PM2.5 from 

sources containing salt, such as sea salt or road salt, may only be present in coastal 

communities or communities with a lot of snow [35, 9]. All subregions included PM2.5 from 

soil dust and secondary sulfate, since both soil (also frequently referred to as dust or crustal) 

and secondary sources have been identified across the US [9, 10, 36, 21]. We simulated 

multisite, regional datasets of PM2.5 chemical constituent concentrations observed at 

multiple monitors, where some monitors were in the same subregion and identified the same 

source types and some monitors were in different subregions and identified different source 

types. Details about the simulated data can be found in the Supplementary Material, 

Appendix B.

4.1. Estimating PM2.5 sources

We first tested whether SHARE could correctly determine sources similar in chemical 

composition across 25 monitors, and this information guides pooling community-level 

estimated health effects across monitors. We simulated data for 5 monitors in each of the 5 

subregions (Table 1). We simulated a total of 120 sources across 25 monitors, where each 

monitor had 4, 5 or 7 source types depending on its corresponding subregion (Table 1). As a 

measure of whether SHARE correctly determines sources similar in chemical composition 

across monitors, we computed the percent of correct source identifications across sources 

and monitors. For example, if SHARE failed to identify a soil-related source at all 5 

monitors in subregion I, but otherwise correctly identified sources, then SHARE was correct 

for 115/120 = 95.8% of sources. In this simulation study, SHARE correctly determined 

sources similar in chemical composition across monitors (100% source identification). 

Because mAPCA assumes the source profiles are the same across monitors, this approach 

frequently identified too many sources in subregions II–V (73% source identification). We 

also performed an array of additional simulations, whose details and corresponding results 

can be found in the Supplementary Material, Appendix B and Table S2. Across different 

simulation scenarios, SHARE was able to correctly determine sources similar in chemical 

compositions across monitors.

4.2. Estimating regional-level health effects

The primary aim of SHARE is to provide a hierarchical modeling approach that facilitates 

multisite time series studies of the short-term health effects of PM2.5 sources. In the second 

part of the simulation study, we evaluated the ability of SHARE to estimate regional-level 

health effects of PM2.5 sources. We also estimated regional-level health effects using 

mAPCA. We did not include the miscellaneous P/V source in this part of the simulation 

study because source apportionment studies frequently focus only on estimated sources that 

match reasonably well to known sources of PM2.5 [10]. The details of the simulated 

hospitalizations data can be found in the Supplementary Material, Appendix B.
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We considered two possible extreme cases of 25 monitors measuring PM2.5 source types 

across a region. In case A, all 25 monitors measured the same source types (all monitors 

were in subregion I), while in case B, the 25 monitors were divided across subregions I–V, 

where subregions are defined as in Table 1. The assumption of mAPCA is met in case A 

since all monitors measured the same set of source types, but not in case B, where the source 

types varied by monitor. Using the simulated data, we applied both SHARE and mAPCA to 

estimate PM2.5 concentrations by source type at each monitor. We fitted log-linear time 

series regression models (equation 2 with no covariates) to estimate associations with 

hospitalizations at each monitor. We estimated regional associations by pooling estimated 

associations from each monitor using a two-level Bayesian hierarchical model. For both 

SHARE and mAPCA, we pooled each source type in  across all monitors. To compare 

differences in the estimated health effects across 100 simulated multisite datasets, we 

obtained the average regression coefficient and its corresponding standard error 

, where W is the within-simulation variance and B is the between-

simulation variance. We used a 10% trimmed mean to compute the statistics across 100 

simulated datasets. From these values, we found the average percent increase in 

hospitalizations for an interquartile range (IQR) increase in PM2.5 concentration by source 

type and the corresponding estimated 95% confidence interval (CI). Also, we obtained the 

mean squared error (MSE) for the estimated health effects across simulated datasets.

Table 2 shows the average estimated regional-level health effects as the percent increase in 

hospitalizations associated with an IQR increase in PM2.5 concentration by source type for 

SHARE and mAPCA. These estimated regional-level health effects were averaged across 

100 simulated multisite datasets, with measurement error standard deviation σε = 0.01. The 

IQRs were computed as the median of monitor-specific IQRs using the simulated data and 

varied between simulated datasets. In case A where all monitors measured the same set of 

source types, estimated health effects were similar using SHARE and mAPCA for source 

estimation. SHARE also performed well in case B where the source types varied across 

monitors and the assumption of mAPCA was not met. The estimated health effects for 

mAPCA in case B were greatly overestimated for traffic and secondary sulfate and greatly 

underestimated for fireworks, salt, and metals. The results for σε ∈ {0.001, 0.1} did not 

differ substantially from results using simulated data with σε = 0.01 (Supplementary 

Material, Tables S3–S4).

In this simulation study, we found that SHARE correctly identifies the set of PM2.5 sources 

that are similar in chemical composition across monitors. Using SHARE, we can also 

estimate regional associations between PM2.5 sources and adverse health outcomes.

5. Cardiovascular hospitalizations and PM2.5 sources in the northeastern US

5.1. PM2.5 sources in the northeastern US

Across 85 EPA CSN monitors in our study, the number of days with complete data for 

PM2.5 total mass and all 24 PM2.5 constituents ranged from 51 days to 924 days with a 

median of 323 days. We first applied SHARE to determine the sources similar in chemical 

composition across monitors (major sources), for which we will pool community-specific 
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health effects to estimate regional-level health effects. Table 3 shows the 9 major sources 
identified using SHARE along with those constituents most associated with each source 

type, which we defined as constituents with values in Λ greater than 0.4 or less than −0.4. 

When possible, we named our major sources by matching them to PM2.5 sources identified 

in the literature [10]. However source names should be interpreted with caution since each 

identified source type may represent any PM2.5 source that has similar contributing chemical 

constituents. In Table 3, we also included the number of monitors and counties where a 

source similar in chemical composition was identified as well as the median and IQR for the 

PM2.5 concentration by source type in μ3/m3. Because both the IQR and average source 

concentrations vary by monitor, we displayed the median IQR and median average source 

concentration across monitors.

We applied both SHARE and mAPCA to data in the northeastern US. Using SHARE, Figure 

3 shows the monitors with PM2.5 sources similar in chemical composition, as represented by 

the major sources (open circles). For monitors where a source type similar in chemical 

composition was not found (plus signs), either this source type was not present at the 

monitor or we were unable to identify the source type at that monitor. Failure to identify the 

source type could occur when either the monitor’s profile corresponding to the source type 

did not explain much of the variability in the chemical constituent data at that monitor or the 

monitor’s profile was too noisy to match a major source. However, the aim of this study was 

to pool estimated health effects for sources with similar chemical composition across 

communities, as defined by the major sources. So estimated health effects were only pooled 

in counties where the estimated chemical composition of the source was similar to the major 
source.

We also estimated sources in the northeastern US using mAPCA. To match source types 

between SHARE and mAPCA, we used the Hungarian method as described in Section 2.3. 

Using mAPCA, we did not identify a P/V source or a traffic source, but otherwise found the 

other 7 major sources identified by SHARE (Table 3).

Sources of PM2.5 may vary by season because of differences in heating use, meteorology, 

and other factors. To determine whether our estimated PM2.5 sources varied by season, we 

applied both SHARE and mAPCA separately to our data divided into cold season days 

(October 1– March 31) and warm season days (April 1–September 30) (Supplementary 

Material, Figures S1–S2, Tables S5–S6). We found that SHARE did not identify PM2.5 from 

fireworks in the cold season, which is reasonable because the US Independence Day holiday 

on July 4th is the day that drives most of the variability in PM2.5 from fireworks. 

Additionally, SHARE did not identify a traffic source in the warm season. Previous results 

have found an increase in traffic PM2.5 in the cold season [35]. While the salt source in the 

cold season consisted of sodium and chlorine, the closest warm season source contained 

primarily nitrate and sodium. By separating data by season, we were able to identify a traffic 

source using mAPCA in the cold season. In the cold season, mAPCA did not identify a 

metals source or a fireworks source. In the warm season, mAPCA did not identify a traffic 

source or an As/Br/Se source. There were fewer available monitors in the seasonal analysis 

compared with the main results because we only included monitors with more than 50 days 

of data in a season.
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5.2. Sensitivity analysis and validation substudy

To test whether the number of total monitors affected the performance of SHARE, we 

estimated PM2.5 sources at 5 monitors in New York City, NY using data from (1) the 5 

monitors in New York City (2) monitors in New York City, NY; Philadelphia, PA; Boston, 

MA; Providence, RI; Washington, DC; Baltimore, MD and (3) 41 monitors in major 

northeast counties. For the 3 datasets, we manually compared the source types identified 

using SHARE at the 5 New York City monitors and did not find substantial variation across 

datasets.

For 10 randomly selected monitors from our dataset, two researchers manually and 

independently determined which major sources were present at each monitor, an approach 

common in the literature [10]. The manual approach and SHARE had good agreement: of 65 

sources identified across 10 monitors, they agreed for 50 sources (76.9%). Excluding poor 

matches where the angle between the monitor-specific source and the major source exceeded 

the threshold of 45 degrees, SHARE agreed with the manual approach in 50 of 55 sources 

across all monitors (90.9%).

5.3. Associations between CVD hospitalizations and PM2.5 sources

Our combined CVD hospitalizations and PM2.5 constituent dataset had 85 EPA CSN 

monitors located within 63 counties. While most counties (n=46) had only one EPA CSN 

monitor, the other 17 counties had 2 monitors (n=13), 3 monitors (Hamilton, OH; Allegheny, 

PA; Philadelphia, PA), and 4 monitors (Cook, IL). A summary of the daily CVD 

hospitalizations by US county can be found in the Supplementary Material, Table S7. We 

applied SHARE and mAPCA to these PM2.5 constituent concentrations to estimate PM2.5 

concentrations by source type at each monitor. For counties with more than one monitor, we 

averaged estimated concentrations from PM2.5 sources across monitors for each day, as is 

commonly done in studies of PM and health [11, 17].

We estimated county-level associations between CVD hospitalizations and short-term 

exposure to PM2.5 sources using overdispersed Poisson time series regression models 

(equation 2). Covariates in the model included indicators for day of week and age category 

(≤64, 65–74, ≥75). In addition, to control for confounding by weather, we included smooth 

functions (natural splines) of temperature and the 3-day running mean temperature, each 

with 6 degrees of freedom, and dew point temperature and 3-day running mean dewpoint 

temperature (3 degrees of freedom each). To account for long-term trends in 

hospitalizations, we also included a smooth function of time with 8 degrees of freedom per 

year. These covariates have been previously used in studies estimating health effects of 

PM2.5 total mass and PM2.5 chemical constituents [17, 34]. As in previous studies, we 

estimated associations between CVD hospitalizations and PM2.5 sources for same-day 

exposure (lag 0), previous-day exposure (lag 1), and exposure 2 days before (lag 2) [17].

We estimated associations with CVD hospitalizations for the 6 major sources identified by 

SHARE that were similar in chemical composition to known sources in the northeastern US: 

traffic, soil, secondary sulfate, sea salt, metals, and residual oil [9, 10, 19, 26]. It is common 

in source apportionment analyses to focus on estimated source types that match known 
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sources of pollution in the area [10]. We did not estimate associations with short-term 

exposure to a fireworks source of PM2.5, since this source type only has high concentrations 

within several days of July 4th and any estimated health effect for the source would be 

confounded by the US Independence Day holiday. For each of the major sources, we pooled 

relevant county-specific associations using a two-level Bayesian hierarchical model. We 

reported estimated associations as the percent increase in CVD hospitalizations associated 

with an IQR increase in each major source to allow comparisons across PM2.5 source types 

(Table 3). The associations and 95% posterior intervals for lags 0, 1, and 2 exposure to 

PM2.5 sources are shown in Figure 4. We also estimated associations separately for the warm 

season and cold season for same-day exposure to PM2.5 sources (Supplementary Material, 

Figure S3).

Using SHARE, we found that an IQR increase in same-day exposure to PM2.5 from traffic 

was associated with a 1.12% (95% posterior interval 0.22%, 2.02%) increase in CVD 

hospitalizations. Additionally, IQR increases in same-day PM2.5 from metals and secondary 

sulfate were associated with increases in CVD hospitalizations of 0.82% (0.36%, 1.28%) 

and 0.74% (0.12%, 1.36%) respectively. Using mAPCA, we found evidence of associations 

of CVD hospitalizations with PM2.5 secondary sulfate, salt, and residual oil at lag 0, though 

mAPCA did not identify a traffic source of PM2.5. We did not find evidence that lag 1 or lag 

2 exposure to PM2.5 sources was associated with CVD hospitalizations using either SHARE 

or mAPCA. The seasonal results showed the largest differences in estimated health effects 

by season for secondary sulfate, salt, and soil (Supplementary Material, Figure S3). We did 

not estimate associations between PM2.5 from metals and CVD hospitalizations in the cold 

season because the source was only identified in one county using SHARE.

6. Discussion

SHARE is a hierarchical modeling approach for estimating regional-level health effects of 

PM2.5 sources in multisite time series studies. In our analysis of PM2.5 source types and 

CVD hospitalizations in the northeastern US using SHARE, we identified positive 

associations between short-term exposure to PM2.5 from traffic, secondary sulfate, and 

metals. Previous studies have identified combustion PM2.5, such as PM2.5 from traffic, to be 

most associated with adverse health outcomes [1]. Exposure to secondary sulfate, a regional 

pollutant that contributes substantially to PM2.5 by mass [21, 10], may be well-represented 

by the daily Air Quality Index (AQI). However, PM2.5 from traffic and metals sources may 

not be well-represented by the AQI because they are frequently spatially heterogeneous and 

can vary substantially within a city. Therefore, recommendations for reducing exposure 

based on the AQI alone may not sufficiently protect health. Other recommendations that 

could reduce exposure to PM2.5 from traffic and metals sources may include not exercising 

near roadways or industrial sources of pollution and keeping the windows rolled up while 

commuting [8]. Our approach to identify the most harmful sources of pollution could also 

facilitate future policies aimed at reducing pollution by focusing on the most toxic sources.

In this study, we were interested in estimating regional-level health effects associated with 

major sources of PM2.5 in a multisite US study. Previously, multisite studies have been used 

to examine confounding and effect modification across regions, including differences by air 
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conditioning use [37], PM2.5 composition [18], and oxidative potential of PM2.5 [38]. We 

did not control for other pollutants that could potentially confound the association between 

PM2.5 sources and CVD hospitalizations. The MCAPS study of 204 US counties did not 

find that CVD hospitalization effect estimates for PM2.5 were modified by average ozone 

concentration [2]. A multisite study of PM2.5 and CVD hospitalizations in Europe did not 

find that associations were confounded by ozone, though there was some evidence of 

confounding by NO2 [3]. Other studies have not found much evidence of confounding of 

PM2.5 by gaseous co-pollutants [1], though this has yet to be extensively examined for 

PM2.5 constituents and sources. A challenge in conducting multisite studies of multiple 

pollutants is that ambient monitors are not always co-located and may measure pollution at 

different temporal scales [39, 40]. We also did not explore confounding by local sources of 

PM2.5 present in each county. Exposure to local sources within a county, for example a 

specific factory, may be associated with adverse health outcomes; however, local sources can 

be better examined using county-level studies instead of multisite studies. In general, 

assessing confounding by other source types in multisite epidemiologic studies is an 

important area of future research, but this may require novel approaches to account for 

varying source types across sites. Because our SHARE approach facilitates multisite studies, 

it could be extended to investigate confounding by PM2.5 sources that has not been 

previously explored.

When we applied SHARE to the data divided by season, we found that the chemical makeup 

of the sodium-containing source (labelled salt) differed substantially with a sodium-chlorine 

source present in the winter and a nitrate-sodium- bromine source in the summer 

(Supplementary Material, Tables S5–S6). The difference in estimated health effects of PM2.5 

from salt between SHARE and mAPCA may be driven by SHARE grouping together two 

different sodium sources: road salt crushed during winter months and an industrial nitrate 

source in the warm season. Because mAPCA estimates sources using constituent data 

concatenated across monitors, it may be more robust to this issue. While we matched factors 

identified using SHARE to known sources of PM2.5 (e.g. traffic) using the chemical 

constituents in Table 3, source apportionment methods cannot definitively link latent factors 

to known PM2.5 sources.

Using season-stratified data, neither SHARE nor mAPCA identified a traffic source of 

PM2.5 across monitors in the warm season. Traffic PM2.5 and its constituents are spatially 

heterogeneous [41], and it may be difficult to estimate the source using ambient monitoring 

data. In addition, we used APCA to estimate source concentrations at each monitor within 

the SHARE framework, which relies on PCA. Traffic PM2.5 may explain little variation in 

the PM2.5 constituent data, making it difficult to estimate with methods such as APCA. 

Future work could explore incorporating prior information about traffic PM2.5 into SHARE 

to enable better estimation of this source.

In this study we did not account for the difference in spatial resolution between point 

measures of pollution and aggregated CVD hospitalizations over counties. Failing to account 

for this spatial misalignment may lead to estimated health effects that are biased towards the 

null [42, 41]. However, approaches to account for spatial misalignment have been generally 

focused on PM2.5 and its constituents. More work is needed to determine how to account for 
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spatial misalignment in studies of PM2.5 sources and health. Our proposed method, SHARE, 

also does not use the spatial correlation between monitors to determine whether two 

monitors measure similar sources of PM2.5. Previous studies have demonstrated that sources 

of PM2.5 vary across regions [9, 19, 20, 21] and even within a community [10], and therefore 

incorporating spatial correlations may not provide additional information about PM2.5 

sources.

We used APCA [27] and mAPCA [26] to estimate sources. While APCA and mAPCA are 

more simplistic source apportionment approaches than models such as PMF, they can be 

easily implemented using standard statistical software, which was necessary to perform 

extensive simulation studies to test the performance of SHARE. Additionally, mAPCA is an 

appropriate comparison to using APCA within SHARE because differences in estimated 

regional-level health effects between mAPCA and SHARE will likely be driven by the 

assumption of mAPCA that source profiles are the same across monitors. Previous studies 

have demonstrated that estimated health effects of PM2.5 sources do not vary substantially 

between source apportionment approaches [43, 44, 21] and therefore we do not expect our 

estimated regional-level health effects were substantially impacted by the source 

apportionment method selected. Future work could examine the performance of SHARE 

using other source apportionment methods.

Many source apportionment models, including both mAPCA and APCA, do not yield 

uncertainties for estimated PM2.5 concentrations by source type. To estimate associations 

between PM2.5 sources and hospitalizations, we treated estimated concentrations from PM2.5 

sources as known in time series regression models and have likely underestimated the 

uncertainty of the resulting health effects. Future work could incorporate bootstrapped 

confidence intervals of the principal components used to estimate sources (e.g. [45]) or fully 

Bayesian models [19] to propagate this uncertainty.

In this work we developed SHARE, a hierarchical modeling approach for performing 

multisite studies of the associations between PM2.5 sources and adverse health outcomes. 

Using SHARE, we found evidence that same-day exposure to PM2.5 from traffic, secondary 

sulfate, and metals was associated with increased emergency CVD hospitalizations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Example of Hungarian method for estimating Ψi corresponding to sources i1–i4 at monitor i 

and major sources M1–M5. Figure 1A shows the matrix of angles, , where 

Ψi = ΛiΛT. Figure 1B shows the resulting matrix  after applying the Hungarian method. 

Shaded boxes indicate sources at monitor i that are similar in chemical composition to major 
sources. Note that source i2 is not similar to any major source since all angles are greater 

than 45 degrees.
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Figure 2. 
Map of 85 PM2.5 chemical constituent monitors from the US EPA chemical speciation 

network.
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Figure 3. 
Maps corresponding to the 9 majors sources identified in the northeastern US. Each map 

shows the monitors where that source has similar chemical composition to the major source 
(open circles) and the monitors where there was not a PM2.5 source with similar chemical 

composition (plus signs).
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Figure 4. 
Regional percent increase in CVD hospitalizations (95% posterior intervals) associated with 

an IQR increase in same-day (lag 0), previous-day (lag 1) and two days before (lag 2) PM2.5 

concentration for 6 major sources identified in the northeastern US. Results are shown for 

SHARE and mAPCA. Unlike SHARE, mAPCA does not identify a traffic source.
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